Living without DAT: Loss and compensation of the dopamine transporter gene in sauropsids (birds and reptiles)
نویسندگان
چکیده
The dopamine transporter (DAT) is a major regulator of synaptic dopamine (DA) availability. It plays key roles in motor control and motor learning, memory formation, and reward-seeking behavior, is a major target of cocaine and methamphetamines, and has been assumed to be conserved among vertebrates. We have found, however, that birds, crocodiles, and lizards lack the DAT gene. We also found that the unprecedented loss of this important gene is compensated for by the expression of the noradrenaline transporter (NAT) gene, and not the serotonin transporter genes, in dopaminergic cells, which explains the peculiar pharmacology of the DA reuptake activity previously noted in bird striatum. This unexpected pattern contrasts with that of ancestral vertebrates (e.g. fish) and mammals, where the NAT gene is selectively expressed in noradrenergic cells. DA circuits in birds/reptiles and mammals thus operate with an analogous reuptake mechanism exerted by different genes, bringing new insights into gene expression regulation in dopaminergic cells and the evolution of a key molecular player in reward and addiction pathways.
منابع مشابه
Evaluation of VNTR polymorphisms of dopamine transporter gene and the risk of bipolar disorder in Zahedan, southeast Iran
The exact role of dopamine transporter gene (DAT1) in the pathogenesis of bipolar disorder type 1 (BD) is not understood. In the present study, we aimed to evaluate the possible association between 30, 40 and 63 bp variable number tandem repeat (VNTR) polymorphisms of DAT1 gene and the risk of type 1 (BD) in a sample of Iranian population. This case-control study was performed on 152 BD patient...
متن کاملEvaluation of iterative reconstruction method and attenuation correction on brain dopamine transporter SPECT using anthropomorphic striatal phantom
Objective(s): The aim of this study was to determine the optimal reconstruction parameters for iterative reconstruction in different devices and collimators for dopamine transporter (DaT) single-photon emission computed tomography (SPECT). The results were compared between filtered back projection (FBP) and different attenuation correction (AC) methods.Methods: An anthropomorphic striatal phant...
متن کاملDopamine transporter (DAT) inhibitors alleviate specific parkinsonian deficits in monkeys: association with DAT occupancy in vivo.
Viable dopamine neurons in Parkinson's disease express the dopamine transporter (DAT) and release dopamine (DA). We postulated that potent DAT inhibitors, with low affinity for the serotonin transporter (SERT), may elevate endogenously released extracellular dopamine levels to provide therapeutic benefit. The therapeutic potential of eight DAT inhibitors was investigated in 1-methyl-4-phenyl-1,...
متن کاملWhen transporters fail to be transported: how to rescue folding-deficient SLC6 transporters
The human dopamine transporter (hDAT) belongs to the solute carrier 6 (SLC6) gene family. Point mutations in hDAT (SLC6A3) have been linked to a syndrome of dopamine transporter deficiency or infantile dystonia/parkinsonism. The mutations impair DAT folding, causing retention of variant DATs in the endoplasmic reticulum and subsequently impair transport activity. The folding trajectory of DAT i...
متن کاملDopamine Transporter Loss in 6-OHDA Parkinson’s Model Is Unmet by Parallel Reduction in Dopamine Uptake
The dopamine transporter (DAT) regulates synaptic dopamine (DA) in striatum and modulation of DAT can affect locomotor activity. Thus, in Parkinson's disease (PD), DAT loss could affect DA clearance and locomotor activity. The locomotor benefits of L-DOPA may be mediated by transport through monoamine transporters and conversion to DA. However, its impact upon DA reuptake is unknown and may mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015